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1. Introduction

In quantum gravity in asymptotically flat 3+1 dimensional spacetime, generic high energy

states with vanishing charge1 are believed to be described by the Schwarzschild geometry.

Their entropy is expected to be given by the Bekenstein-Hawking (BH) formula

S = A/4GN , (1.1)

with A = 4πR2
h the area of the horizon, Rh the Schwarzschild radius and GN the Newton

constant (see e.g. [1] for a review).

This description is thermodynamic in nature. The Euclidean black hole solution con-

tributes to the canonical free energy at a temperature equal to the Hawking temperature

of the black hole. The Minkowski solution can be thought of as an average over all states

with energy equal to the mass of the black hole. Thus, it corresponds to the microcanonical

ensemble. The entropy — energy relation implied by (1.1) is S = 4πGNM2. This is the

leading term in an asymptotic expansion in inverse energy. Corrections are due to quantum

and other effects.

The problem of providing a statistical interpretation to black hole thermodynamics

has received a lot of attention over the years and much progress has been achieved (see

e.g. [1 – 4] for reviews). In particular, for gravity in asymptotically anti-de-Sitter spacetime,

1There are generalizations to states with charge, angular momentum, as well as to other dimensions of

spacetime.

– 1 –



J
H
E
P
0
1
(
2
0
0
7
)
0
7
1

which is dual to a field theory [5], the entropy of large AdS-Schwarzschild black holes is

expected (and in some examples was verified) to agree with the high energy density of

states of the dual field theory. In other cases, such as large Schwarzschild black holes in

asymptotically flat spacetime, the nature of the “microstates” that lead to the BH entropy

is not understood.

String theory contains gravity, so the above discussion applies to it. When the string

coupling gs is small, the theory has two widely separated scales. One is lp, at which

quantum gravity effects become important. The other is ls =
√

α′ = 1/Ms, at which string

corrections become important. For example, in 3 + 1 dimensions one has lp = gsls, so

lp ¿ ls at weak coupling.

In weakly coupled string theory, the Schwarzschild solution describes the thermody-

namics for energies E À Ms/g
2
s . In this regime the Schwarzschild radius is large (Rh À ls)

and gravity is reliable, but the spectrum of the theory is not understood. On the other

hand, for Els large but finite in the limit gs → 0 the spectrum is known, and one can

study the corresponding statistical mechanics using standard tools. To leading order in gs,

the free energy is given by the string partition sum with Euclidean time compactified on a

circle of circumference β = 1/T , evaluated on a worldsheet torus [6 – 9]. This approach is

statistical in nature, since the partition sum is obtained by tracing over microstates.

A natural question is whether there is a description of the perturbative string spectrum

in terms of black hole thermodynamics. It is reasonable to expect that such a description

exists since for Els À 1 the free string entropy is large and a thermodynamic description

should be appropriate. Indeed, for some classes of perturbative heterotic string states with

mass equal to charge, thermodynamic descriptions in terms of extremal black holes were

proposed before [10 – 14].

The main purpose of this note is to propose a thermodynamic description for a class

of perturbative string states with generic mass and charges in 3 + 1 dimensional type

II and 4 + 1 dimensional heterotic string theory. According to this description, as one

approaches a highly excited fundamental string of mass M , the angular sphere shrinks and

decouples from the radial direction and time. The latter are described by a two dimensional

geometry with asymptotically flat metric and linear dilaton in the radial direction. The full

near-horizon geometry is described by the (charged or uncharged) two dimensional black

hole [15 – 20]. We show that the thermodynamic entropy of the black hole matches that

of the corresponding perturbative string states to leading order in Ms/M and any mass to

charge ratio.

The above construction seems to be special to 3 + 1 dimensions in type II and 4 + 1

dimensions in heterotic string theory. In other dimensions one should also be able to replace

highly excited strings by geometries, but these geometries might be more complicated. An

important feature of our proposal is the decoupling of the angular sphere from the radial

coordinate and time in the near-horizon geometry. This decoupling probably does not occur

in general and the near-horizon geometry is described by a highly curved background which

involves all d dimensions of spacetime.

We also discuss the generalization of the above construction to the case where in

addition to the electric charges carried by perturbative strings we turn on magnetic charges

– 2 –



J
H
E
P
0
1
(
2
0
0
7
)
0
7
1

associated with Neveu-Schwarz fivebranes and Kaluza-Klein monopoles. We construct the

exact worldsheet background corresponding to systems with generic values of these four

charges and mass, and study their thermodynamics.

2. Type II strings

We start with type II string theory on

IR3,1 × C6 , (2.1)

where C6 is a compact manifold. The sigma model on C6 is a unitary N = 1 superconformal

field theory with central charge c = 9 and a discrete spectrum of scaling dimensions starting

at zero. We are interested in the thermodynamics of highly excited perturbative string

states in this background. In this section we will provide such a description, first for

uncharged states and then for states carrying up to two charges associated with a circle in

C6.

2.1 Type II strings as black holes

One way to approach the problem is to start with a large Schwarzschild black hole, with

Schwarzschild radius Rh À ls, and ask what happens when its mass decreases. For the

Schwarzschild solution, one has Rh = 2GNM , so as M decreases Rh does as well. Even-

tually it becomes of order ls and string corrections become important. Formally, this hap-

pens when M ∼ Ms/g
2
s , which is the transition region between the black hole and string

regimes [21 – 24]. Below that mass, the size of the typical state is larger than the horizon

radius, but one can still hope to use a black hole picture to study the thermodynamics.

As GNM/ls → 0 we expect the BH temperature to approach the Hagedorn one, and

black hole thermodynamics to match smoothly to perturbative string thermodynamics. In

particular, for M À Ms and gs → 0 the black hole entropy should behave like

S = βHM , (2.2)

with

βH = 2
√

2πls (2.3)

the inverse Hagedorn temperature of perturbative type II strings.

This behavior should be reproduced by the α′ corrected near-horizon Schwarzschild ge-

ometry. To find this geometry by systematically including these corrections is a formidable

task, both because the perturbative corrections to the Einstein equations are known only

to the first few orders in α′, and because non-perturbative effects might be important. We

will next make a proposal for its form.

For large values of the radial coordinate r, the space around a small black hole is flat

(IR3). As r decreases, the radius of the angular two-sphere S2 shrinks. We will assume that

near the horizon the geometry factorizes into a 1 + 1 dimensional background describing

(t, r) and a two-dimensional one for the S2. The main motivation for this assumption is

that this is expected to happen for certain charged extremal four dimensional black holes
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that preserve some supersymmetry (see e.g. [25] for a recent review). As we will see later,

it is then natural to expect that it happens for non-extremal and uncharged black holes as

well.

At any rate, under the above assumption the worldsheet CFT corresponding to S2

is trivial for the following reason. By construction, this CFT must have an SO(3) global

symmetry. This implies the existence of a worldsheet current (Ja, J̄a), with a = 1, 2, 3, in

the adjoint of SO(3), satisfying the conservation equation

∂̄Ja + ∂J̄a = 0 . (2.4)

Since the worldsheet theory on S2 is a unitary CFT with a discrete spectrum, one can

show in general that Ja and J̄a must be separately conserved, i.e. ∂̄Ja = ∂J̄a = 0. If one

of the currents is non-zero, the other should be non-zero as well since the worldsheet CFT

corresponding to the small black hole background should be left-right symmetric. The sym-

metry is thus enhanced to SU(2)L × SU(2)R with Ja and J̄a satisfying the corresponding

affine Lie algebra relations. As is well known, backgrounds with such symmetries corre-

spond geometrically to S3 rather than S2, and contain fluxes of the NS B-field through the

sphere, which makes them inappropriate here. The currents Ja and J̄a must thus vanish,

so the simplest possibility is that the worldsheet theory corresponding to S2 is trivial.

We conclude that the near-horizon geometry of the small black hole contains only the

radial direction and time. The corresponding worldsheet CFT should have the same central

charge as that describing the flat spacetime at infinity. Since time translation invariance is

a symmetry, the simplest possibility is that the near-horizon geometry contains a dilaton

which is asymptotically linear in the radial direction φ, a function of r that corresponds

near the boundary of this geometry to a canonically normalized scalar field.

The slope of the dilaton, Q, determines the central charge of the worldsheet theory for

φ via the relation

cφ = 1 + 3Q2 . (2.5)

Comparing the central charge of the theory of (t, φ) to that of IR3,1 fixes Q. One finds that

Q = 1, such that the total central charge of (t, φ) and their worldsheet superpartners is

equal to six.

One can think of the appearance of the linear dilaton as an analog of gravitational

RG flow. It is well known (see e.g. [26, 27]) that if one couples a two dimensional theory

which interpolates between UV and IR fixed points along an RG flow to worldsheet gravity,

the RG flow proceeds as a function of the Liouville coordinate φ. The boundary of space,

φ → ∞, where the string coupling goes to zero, corresponds to the UV fixed point, while

φ → −∞ corresponds to the IR fixed point. In our case, the analog of the Liouville

coordinate is the radial coordinate r or φ. On its own, the sigma model on the angular

two-sphere in IR3 naturally goes to smaller central charge, and is massive in the infrared.

The radial direction compensates by developing a non-trivial dilaton and increasing its

central charge.
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To summarize, we propose that the asymptotic form of the near-horizon geometry of

small black holes (i.e. those with masses in the perturbative string regime) is

IRt × IRφ × C6 . (2.6)

The dilaton is linear in the radial coordinate φ such that this background is critical. All

excitations in the near-horizon geometry (2.6) are singlets of SO(3) (i.e. s-waves). A related

fact is that if the full background (2.1) preserves some supersymmetry, only half of the

generators are visible in the near-horizon geometry (2.6). The other half act trivially on

all degrees of freedom there, like the generators of SO(3).

The small black hole must correspond to a two dimensional black hole in IRt × IRφ.

The unique solution to the string equations of motion with the right properties is the

SL(2, IR)/U(1) black hole [15 – 17], which is described by the metric and dilaton (here we

set α′ = 2)

ds2 = f−1dφ2 − fdt2 , f = 1 − 2M

ρ
,

Qe−2Φ = QeQφ = ρ . (2.7)

The dilaton is asymptotically linear in φ, and approaches a constant,

e−2Φh =
2M

Q
, (2.8)

at the horizon. The level of SL(2), k, is in general related to the linear dilaton slope via

the relation

Q =

√
2

k
. (2.9)

Note that k is the total level of SL(2, IR). The worldsheet theory is superconformal; it

consists of a bosonic SL(2, IR) WZW model of level k + 2, and three free fermions in the

adjoint representation that contribute −2 to the level. In our case Q = 1, so k = 2. This

value lies above the transition of [28, 20], so the black hole is a normalizable state in the

near-horizon geometry.

The Euclidean black hole is obtained by Wick rotating t → it in (2.7). This gives rise

to a cigar geometry, and one can read off the inverse temperature of the black hole from

the circumference of Euclidean time at infinity. The result is

βH = 2πls
√

k , (2.10)

which corresponds to a Hagedorn entropy at high energies E À Ms,

SBH = βHE . (2.11)

This result is valid for all k, despite the fact that (2.7) was obtained by solving the equations

of motion of dilaton gravity, which are only valid for large k (or small Q). This can be

shown by analyzing the exact spectrum of the coset theory SL(2, IR)/U(1) algebraically.
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From the sigma model point of view, it follows from the fact that the coset preserves N = 2

supersymmetry, which leads to non-renormalization of the background (2.7).

Altogether, we conclude that the small black hole that provides a thermodynamic

description of uncharged fundamental string states with mass M À Ms in IR3,1 × C6 is

SL(2, IR)2

U(1)
× C6 . (2.12)

This black hole has a Hagedorn entropy (2.11). Its Hagedorn temperature (2.10) coincides2

with that of perturbative fundamental strings (2.3).

The assertion that perturbative string states develop a linear dilaton throat in their

vicinity sounds at first sight surprising. Note that this is only expected to occur for states

with sufficiently small mass. The black hole geometry (2.7), in which the dilaton decreases

as one moves away from the horizon, attaches to flat space at the place where eΦ reaches

its asymptotic value, gs. In order for it to be valid in a significant range of distances, the

string coupling at the horizon, (2.8), must be much larger than the asymptotic coupling,

or:

M ¿ Ms

g2
s

. (2.13)

Thus, as one would expect, our description is only valid well below the string/black hole

correspondence region of [21 – 24].

From the point of view of the full geometry, the throat (2.7) occupies a string size

region around r = 0. A simple way to see that is to note that in (2.7) the two-sphere has

already disappeared. Thus, (2.7) must attach to the rest of the geometry in a region where

the size of the two-sphere is of the order of the string scale. Another, heuristic, way to

estimate the radial size of the throat is to note that the geometry (2.7) is reminiscent of

the Schwarzschild one, with the replacement ρ → r/g2
s . In the coordinate ρ the transition

between the linear dilaton throat and flat spacetime occurs at ρ ∼ 1/g2
s , which is equivalent

to r ' 1.

As the mass M of the string state increases towards M ∼ Ms/g
2
s , the linear dilaton

region shrinks and eventually disappears. On the other hand, as M/Ms decreases the throat

formally becomes longer, but the string coupling at the horizon grows and for M ' Ms

the theory becomes strongly coupled. This is natural from the point of view of string

thermodynamics since the entropy of the corresponding fundamental string states is small

and one expects large fluctuations in the thermal description.

One can also ask what happens for other dimensions of spacetime. The general con-

siderations above suggest that one should still be able to replace fundamental strings with

M À Ms by a geometry with a horizon. However, in this case the description of the

near-horizon region by an SL(2, IR)/U(1) black hole is inconsistent with the free string

entropy. We suspect that the origin of the problem is the assumption of decoupling of the

angular sphere Sd−2 from the radial coordinate and time. In general, there is no motivation

for assuming this decoupling, and without it it is difficult to determine the near-horizon

2The fact that the Little String Theory entropy agrees with the perturbative string one for k = 2, as

well as some other relations between the two problems, were pointed out in [29].
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geometry. The situation for states with non-zero angular momentum in 3+1 dimensions is

also more complicated due to the absence of SO(3) symmetry in the corresponding black

hole solution.

2.2 Charged strings as black holes

In this subsection we will generalize the discussion of the previous subsection to funda-

mental string states which carry momentum n and winding w around a circle of radius R.

Thus, we will take the geometry (2.1) to have the form

IR3,1 × S1 × C5 . (2.14)

The left and right-moving momentum of the string on the S1 is given by

(qL, qR) =

(
n

R
+

wR

α′
,

n

R
− wR

α′

)
. (2.15)

The mass-shell condition is

α′M2 = 4NL + α′q2
L = 4NR + α′q2

R , (2.16)

where NL, NR are the left and right-moving oscillator levels.

For large NL and/or NR, the entropy of free strings with mass M and charges (qL, qR)

is given by

S = 2π
√

2
(√

NL +
√

NR

)
= πls

√
2

(√
M2 − q2

L +
√

M2 − q2
R

)
. (2.17)

For qL = qR = 0 we saw in the previous subsection that the black hole background (2.12)

provides a thermodynamic description of these states. Black holes with generic (qL, qR)

are obtained by adding a circle to the uncharged black hole, performing a boost along it,

followed by T-duality and another boost. This leads [30] to the background

SL(2, IR)2 × U(1)

U(1)
× C5 . (2.18)

The charge to mass ratio of the black hole determines the way the U(1) in the denominator

is embedded in SL(2, IR)2 ×U(1). Denoting by (J3, J̄3) the left and right-moving currents

in a space-like Cartan subalgebra of SL(2, IR)L × SL(2, IR)R, and by (J, J̄) the currents

corresponding to the U(1) factor in the numerator of (2.18), the left and right components

of the gauged U(1) current (JL, JR) are given by

JL = J3 cos αL + J sin αL ,

JR = J̄3 cos αR + J̄ sin αR , (2.19)

where

sin αL = qL

M
,

sin αR = qR

M
. (2.20)
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In the special case qL = qR = 0, we have αL = αR = 0, and the background (2.18) reduces

to the uncharged two dimensional black hole (2.7), (2.12), with C6 = S1 × C5.

For generic (qL, qR), the SL(2,IR)×U(1)
U(1) factor in (2.18) describes time, the radial coordi-

nate of the four dimensional charged black hole and the circle under which the fundamental

strings are charged. The angular two-sphere decouples in the near-horizon region, as in the

uncharged case.

The three dimensional background in (2.18) is a special case of a more general class of

charged black holes of the form

SL(2, IR)k × U(1)

U(1)
. (2.21)

The geometry and thermodynamics of these black holes were studied in [20]. Their entropy

is

SBH = πls
√

k

(√
M2 − q2

L +
√

M2 − q2
R

)
. (2.22)

As in the uncharged case, one can obtain (2.22) by analyzing the background (2.21) alge-

braically. One can also describe this background as a solution to dilaton gravity coupled

to gauge fields and use it to study the thermodynamics. Apriori this analysis is only valid

for large k, but in fact it is expected to be exact, as for qL = qR = 0.

For k = 2, (2.22) is equal to the free string entropy (2.17) and we propose that the

background (2.18) is in fact the near-horizon geometry of the corresponding string states.

Like (2.17), (2.22) is valid to leading order in Ms/M and for arbitrary charge to mass ratio

αL, αR (2.20).

In general, the black hole (2.18) is non-extremal and breaks all supersymmetry. In

some special cases, which correspond to extremal black holes, part of the supersymmetry

is preserved by the solution. In particular, for

M = |qR| (2.23)

and generic qL the solution preserves a quarter of the supercharges of the background (2.6)

and provides a thermodynamic description of the corresponding 1/4 BPS Dabholkar-Harvey

states [31, 32]. In this case, αL in (2.20) is generic, while | sin αR| = 1. Thus, the right-

moving component of (2.19) lies purely in the S1 in (2.14), (2.18), while JL acts both on

the SL(2, IR) and the U(1) in (2.18).

For large k, one can think of (2.21) as a sigma model on AdS2 × S1, whose properties

can be obtained from the results of appendix C of [20]. The radii of the AdS space and

the circle are given by

RAdS =
ls
2

√
k , (2.24)

and

R = ls

√∣∣∣ n

w

∣∣∣ . (2.25)

The gauge fields associated with G and B on the circle have constant field strengths on

AdS2 (proportional to n and w). The two dimensional dilaton takes the value

1

g2
2

=
√

k|nw| . (2.26)
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In the case of interest to (2.18), k = 2, the background (2.21) is highly stringy, but as in the

other cases discussed above one can still formally continue the sigma model picture to this

regime, and the results (2.24), (2.25) do not receive α′ corrections. String loop corrections

are small for |nw| À 1, the regime of interest.

A further restriction to the case

M = qL = −qR , (2.27)

corresponding to a string with winding but no momentum around S1, leads to a black hole

that preserves half of the supersymmetry. From (2.19), (2.20) we see that in this case the

gauging does not act on the SL(2, IR) in (2.18), and the resulting background is

SL(2, IR)2 × C5 . (2.28)

The three dimensional string coupling can be obtained by combining (2.25), (2.26):

1

g2
3

=
√

k|w| =
√

2|w| . (2.29)

Thus, string theory in the background (2.28) is weakly coupled for large |w|, and can be

studied using standard perturbative string theory techniques.

2.3 States carrying electric and magnetic charges

So far we focused on states which carry only electric charges (2.15) on the S1 in (2.14). In

this subsection we generalize the discussion to states that carry magnetic charges as well.

To do that, we take the compact manifold C5 in (2.14) to have the form C5 = S̃1 × C4, so

that the geometry (2.14) is

IR3,1 × S1 × S̃1 × C4 , (2.30)

and add to the strings with momentum and winding (n,w) on S1 discussed above W̃ NS5-

branes wrapped around S1×C4 and Ñ KK monopoles extended in the same five directions

and charged under the Kaluza-Klein gauge field associated with S̃1. The magnetically

charged objects are BPS and we consider excitations of this configuration with energy

E À Ms, as before.

To compute the entropy of such states we need the corresponding near-horizon geom-

etry, which is given by
SL(2, IR)k × U(1)

U(1)
× SU(2)k

Z(Ñ)L
× C4 . (2.31)

Here

k = ÑW̃ , (2.32)

and the U(1) quotient acts as in (2.19), (2.20). As before, k (2.32) is the total level of

SL(2, IR) which receives contributions of k+2 and −2 from bosons and fermions respectively.

Similarly, for the SU(2) component in (2.31) the total level (2.32) receives a contribution

of k− 2 from a bosonic SU(2) WZW model and +2 from three free fermions in the adjoint

representation that are needed for superconformal symmetry.

– 9 –
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To prove (2.31) one can proceed as follows. For the special case qL = qR = 0, the

background (2.31) reduces to

SL(2, IR)k

U(1)
× S1 × SU(2)k

Z(Ñ)L
× C4 , (2.33)

which is known to describe near-extremal NS5-branes and KK monopoles wrapped around

S1 × C4 [33, 34]. The Z(Ñ)L quotient in (2.33) is associated with the KK monopoles. It

acts holomorphically on the worldsheet; see e.g. [34] for a more detailed discussion. The

value of the dilaton at the horizon is determined by the energy density, as in (2.8), [33].

To generalize to the case of non-vanishing electric charges one can perform the sequence

of boosts and T-duality on the S1 discussed for the case of vanishing magnetic charges

above. This leads to the background (2.31) whose entropy is given by (2.22), (2.32).

As in the case of vanishing magnetic charges, one can restrict to the special case where

M is equal to either |qL| or |qR|. The two cases are in general inequivalent due to the

presence of the KK monopoles, which give rise to the Z(Ñ) orbifold in (2.31), which we

chose, without loss of generality, to act on the left-moving worldsheet degrees of freedom.

The case M = |qR| corresponds to states that preserve half of the supersymmetry of the

NS5 — KK system. For M = |qL| one finds extremal, non-supersymmetric black holes.

In both cases, dimensional reduction of the geometry (2.31) to 3 + 1 dimensions gives

AdS2 × S2, with [20, 34]

RAdS = Rsphere =
ls
2

√
k . (2.34)

The dilaton takes the constant value

g2
4 =

√
ÑW̃

|nw| . (2.35)

The radii of S1 and S̃1 (2.30) are fixed to the values

R2

α′
=

∣∣∣ n

w

∣∣∣ ,
R̃2

α′
=

W̃

Ñ
. (2.36)

There are also electric gauge fields on AdS2 and magnetic gauge fields on S2 associated

with S1 and S̃1 respectively. The entropy (2.22) reduces in this case to

Sextremal = 2π

√
|nw|ÑW̃ . (2.37)

In the BPS case, this agrees with the entropy of four charge black holes in 3+1 dimensions

(see e.g. [35]).

Further specifying to the case (2.27) leads to the background

(AdS3)k × SU(2)k

Z(Ñ)L
× C4 , (2.38)

which was studied in [34].
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Note that unlike the pure fundamental string case, here all the symmetries of the

branes are realized in the near-horizon description. In particular, the SO(3) symmetry cor-

responding to rotations in IR3 in (2.30) is realized in SU(2)k

Z( eN)L

, and all unbroken supercharges

act non-trivially on the background. This is natural, since for large magnetic charges the

black holes are large and one can think of (2.31), (2.38) as a supergravity background,

while the corresponding solution for strings (2.18), (2.28), is necessarily strongly curved.3

3. Heterotic strings

The worldsheet construction of the heterotic string combines the right-movers of the super-

string with the left-movers of the bosonic string. Thus it is useful, as a warm-up exercise,

to first study the latter. As usual, due to the infrared instability of the twenty six dimen-

sional flat spacetime background, reflected in the presence of the bosonic string tachyon,

this case is not entirely physical, but it is useful as preparation to the heterotic string.

3.1 Thermodynamic description of highly excited bosonic strings

The entropy of highly excited perturbative bosonic string states is linear in the energy, as

for type II (2.2). The inverse Hagedorn temperature is given by

βH = 4πls . (3.1)

Following the logic of section 2 one might hope that for a particular value of d the near-

horizon geometry of highly excited strings in

IRd−1,1 × C26−d (3.2)

is given by (compare to (2.12))

SL(2, IR)kb

U(1)
× C26−d . (3.3)

Criticality of the background (3.3) implies that

3kb

kb − 2
− 1 = d . (3.4)

One can determine kb and d by requiring that the thermodynamic entropy of the two

dimensional black hole (3.3) agree with the microscopic entropy (2.2), (3.1).

The entropy of the bosonic two dimensional black hole (3.3) is again given

by (2.10), (2.11) (with k → kb). Comparing to (3.1) we conclude that the level kb must be

given by

kb = 4 . (3.5)

3A related fact is that the asymptotically linear dilaton throat associated with the strings, (2.12), (2.18),

is not obtained from the one with non-zero magnetic charges by setting the magnetic charges to zero.

Indeed, the background (2.31) – (2.33) only makes sense for eN fW ≥ 2.
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Note that while this value looks different from the one we found in the type II case (k = 2),

it is in fact the same. Before modding out by U(1), we had in the type II case an SL(2, IR)

WZW model with kb = 4 and three free fermions which contributed −2 to the level, for

a total of k ≡ kb − 2 = 2. Here, we have just the bosonic WZW model, whose level is

the same as for type II. This fact will play an important role in the generalization to the

heterotic string.

Plugging (3.5) into (3.4) we find that in the bosonic string our construction works for

d = 5, in contrast to the type II case where it worked for d = 4 (2.1). This seems like a

problem for the heterotic case which combines the two, but as we will see next, there is a

natural conjecture that can be made there as well.

3.2 Heterotic strings as black holes

The heterotic string compactified to 4 + 1 dimensions on a manifold C5 is described by the

background

IR4,1 × C5 . (3.6)

We would like to find the near-horizon geometry of highly excited perturbative string states

in this background. Following the discussion of section 2 and the previous subsection, it is

natural to propose that the asymptotic form of this geometry is (compare to (2.6))

IRt × IRφ × C5 . (3.7)

The central charge accounting works as follows. For the left-moving (bosonic) sector, the

central charge of IRt × IRφ is given by

c = ct + cφ = 1 + 1 + 3Q2 = 5 , (3.8)

where we took the slope of the linear dilaton to be Q = 1, as before. Thus, the left-moving

central charge of (3.7) is critical.

For the right-moving (fermionic) sector, in addition to the bosonic fields (t, φ) we have

their two worldsheet superpartners which together with (3.8) bring the central charge to

six. However, the total central charge in this sector has to be that of IR4,1, which is 15/2.

Thus, we are missing 3/2 units of cR.

This is precisely the central charge of three free fermions ψ̄i, i = 1, 2, 3, which re-

alize a level two right-moving SU(2)R current algebra, and an N = 1 superconformal

algebra needed for consistency of the fermionic string. We add these right-moving free

fermions to (3.7) and interpret the resulting SU(2) symmetry as an SU(2)R subgroup of

the SO(4) = SU(2)L × SU(2)R rotation group of IR4 (3.6). The resulting background is

a natural candidate for the asymptotic form of the near-horizon geometry of perturbative

heterotic strings in 4 + 1 non-compact dimensions.

The heterotic background described above is qualitatively different from its type II

counterpart. It is 4 + 1 rather than 3 + 1 dimensional, and while in the type II case the

SO(3) rotation group acts trivially on the near-horizon geometry, in the heterotic string

an SU(2)R subgroup of SO(4) acts non-trivially.
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So far we only described the asymptotic form of the near-horizon geometry. The full

background is

SL(2, IR)2

U(1)
× {ψ̄1, ψ̄2, ψ̄3} × C5 . (3.9)

The first factor in (3.9) is a heterotic coset CFT with (0, 2) superconformal symmetry,

which we describe next. Models of this sort are not well studied, and certainly deserve

more attention. We will consider the more general case where the left-moving SL(2, IR)

has level kb, and the right-moving one is a super affine Lie algebra of total level

k = kb − 2 . (3.10)

The case (3.9) corresponds to k = 2, kb = 4.

One can define the model algebraically, by specifying the current that is being gauged.

As in the type II and bosonic discussions above, the left and right moving components of

this current are Cartan subalgebra generators of the left and right-moving SL(2, IR), J3

and J̄3. However, in the heterotic case the levels of the left and right-moving SL(2, IR)’s

are different (they are given by kb and k, respectively). Hence, the anomaly free current is

(
J3,

√
kb

k
J̄3

)
. (3.11)

The worldsheet superpartner of J̄3 is gauged as well.

The Euclidean heterotic coset can be described using an analog of the duality of the

cigar to Sine-Liouville in the bosonic case [36, 37] and to N = 2 Liouville in the fermionic

case [38]. We start with the Euclidean version of (3.7), IRy × IRφ (with y = it). The

Liouville deformation is a combination of Sine-Liouville for the left-movers, and N = 2

Liouville for the right-movers:

δL = λG− 1

2

e
− 1

Q
(φ+i

q
kb
k

yL+iyR)
+ c.c. , (3.12)

where Q and k are related by (2.9) and G− 1

2

is the right-moving supersymmetry generator.

As in the other cases mentioned above [36 – 38], we expect the heterotic coset (3.11) to

be related to the Liouville model (3.12) by strong-weak coupling duality. It would be

interesting to explore this duality further.

The entropy of the heterotic coset described above is given by a combination of the

fermionic and bosonic ones,

S = πlsM
(√

kb +
√

k
)

= πlsM
(√

k + 2 +
√

k
)

. (3.13)

For the case of interest, (3.9), k = 2 and the entropy (3.13) agrees with that of free heterotic

strings. Thus, (3.9) is a natural candidate for the near-horizon geometry of highly excited

heterotic strings in 4 + 1 dimensions (3.6).
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3.3 Charged heterotic strings as black holes

If the geometry (3.6) has the form

IR4,1 × S1 × C4 , (3.14)

one can study the thermodynamics of states with left and right-moving momentum (qL, qR)

on S1 as in subsection 2.2. For large oscillator levels NL and/or NR, the entropy of free

heterotic strings with mass M and charges (qL, qR) is given by

S = 2π
√

2
(√

2NL +
√

NR

)
= πls

√
2

(√
2(M2 − q2

L) +
√

M2 − q2
R

)
. (3.15)

Note the relative factor of
√

2 between the left-moving (bosonic) and right-moving

(fermionic) sectors of the theory (compare to (2.17)).

For qL = qR = 0 we proposed in the previous subsection that the black hole back-

ground (3.9) provides a thermodynamic description of these states. Black holes with

generic (qL, qR) can be obtained from the uncharged one as before, and correspond to

the background
SL(2, IR)2 × U(1)

U(1)
× {ψ̄1, ψ̄2, ψ̄3} × C4 . (3.16)

The charge to mass ratio of the black hole determines the way the U(1) in the denominator

acts on SL(2, IR)2 × U(1) as in subsection 2.2.

For general k, the entropy of the heterotic coset in (3.16) is given by [20]:

S = πls

(√
(k + 2)(M2 − q2

L) +
√

k(M2 − q2
R)

)
. (3.17)

For the special case k = 2 it agrees with that of free heterotic strings (3.15).

In the supersymmetric extremal case (2.23) and the non-supersymmetric one M = |qL|,
one can again formally think about the coset as a sigma model on AdS2 × S1, whose

properties are given in (2.24) – (2.26) with k = 2. A further restriction to the case (2.27)

leads to the heterotic string on SL(2, IR)2 × {ψ̄1, ψ̄2, ψ̄3} × C4, with the three dimensional

string coupling given by (2.29).

3.4 States carrying electric and magnetic charges

To add magnetic charges we consider the heterotic string in the 3 + 1 dimensional back-

ground (2.30). In general, the two circles S1 and S̃1 combine with the left-moving world-

sheet fields into an even, self-dual Narain torus Γ2,18 (see e.g. [39]). We will restrict to

the case where this torus factorizes, Γ2,18 = Γ1,1 × Γ1,1 × Γ16, and the spacetime fields

associated with Γ16 are not excited. As in subsection 2.3, we will study configurations

that contain W̃ NS5-branes and Ñ KK monopoles wrapped around S1 × C4 and charged

magnetically under the gauge fields associated with the Neveu-Schwarz B-field and metric

on S̃1, respectively.

We are interested in excitations with mass M À Ms and momentum and winding

(n,w) around the S1. The analogous system in type II string theory has the near-horizon
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geometry (2.31). This background, properly interpreted (see [34] and the previous subsec-

tions), is the near-horizon geometry in the heterotic case too. The level k is given in this

case by

k = ÑW̃ + 2 . (3.18)

For the right-movers this means that the bosonic SL(2, IR) and SU(2) sigma models have

current algebras of level k + 2 and k − 2 respectively, as well as worldsheet fermions in the

adjoint that complete both levels to k. In the left-moving sector, the fermions are absent,

while the bosonic sigma model has the same properties as for the other worldsheet chirality.

The Z(Ñ) orbifold acts on the left-moving, bosonic, side. The entropy corresponding

to (2.31) is in this case given by (3.17), with the value of k given in terms of the magnetic

charges in (3.18).

As in the type II case, there are a number of special cases in which the back-

ground (2.31) simplifies. For uncharged excitations (qL = qR = 0) one finds again the

near-extremal fivebrane/KK monopole background (2.33), with the left/right asymmetry

discussed in the general case. The entropy (3.17) takes the Hagedorn form (3.13), with

k = ÑW̃ + 2.

One can also consider the extremal cases M = |qR|, which is BPS, and M = |qL|, which

is not. In both cases, the near-horizon geometry (2.31) reduces to AdS2 × S2 [34, 40, 20].

The sizes of the anti de-Sitter space and the sphere are again given by (2.34), with the

appropriate value of k, (3.18). The four dimensional string coupling takes a form similar

to (2.35), with ÑW̃ → ÑW̃ + 2 (due to the change in level from (2.32) to (3.18)). The

radii of S1 and S̃1 are independent of k and are again given by (2.36).

As in the type II case, the geometric features above are obtained by continuing from

a regime in which the gravity approximation is reliable. For small (n,w, Ñ , W̃ ) one should

instead study the exact CFT (2.31), however, the gravity analysis is still useful for many

purposes. Indeed, the values of the fields found above from the CFT (2.31) agree with

those obtained in higher derivative gravity [41 – 48, 13, 25].

The entropy (3.17) reduces in the extremal cases to:

M = |qR| : Ssusy = 2π

√
|nw|(ÑW̃ + 4) ,

M = |qL| : Snon−susy = 2π

√
|nw|(ÑW̃ + 2) . (3.19)

This should be compared to equation (2.37) which holds for both supersymmetric and

non-supersymmetric extremal black holes in the type II case. For BPS black holes, (3.19)

agrees with previous analyses [41 – 48, 13, 25]. For the non-BPS extremal black holes, it

agrees with [12, 14, 49].

We see that for generic Ñ , W̃ the heterotic construction and results are very similar to

the type II ones. There is however an important difference. In the heterotic case, setting

ÑW̃ = 0 in (3.18), the level k takes the value k = 2, for which the heterotic version of (2.31)

make sense, and it is natural to associate it with the near-horizon background of heterotic
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fundamental strings, as was done in the previous subsections.4 Moreover, in this case the

extremal entropy (3.19), or more generally the non-extremal one (3.17), agrees precisely

with that of perturbative heterotic strings with the same quantum numbers, (3.15), as

discussed above.

Finally, note that when Ñ = 0 the radius of S̃1 at the horizon (2.36) goes to infinity, in

agreement with the proposal that the corresponding small black holes describe fundamental

heterotic string states in 4+1 dimensions.

4. Discussion

In this note we proposed a thermodynamic description of perturbative string states with

M À Ms in 3+1 (4+1) dimensional type II (heterotic and bosonic) string theory in terms

of small black holes in an asymptotically linear dilaton spacetime. We showed that these

black holes have the correct entropy for both uncharged and electrically charged states and

discussed the generalization to non-zero magnetic charges.

Perturbative strings are believed to be well described by weakly coupled string theory

in flat spacetime. A natural question is what is the relation of the black hole descrip-

tion proposed here to the standard approach. A possible answer is the following. String

perturbation theory is known to break down at high energies. A dramatic manifestation

of this is the formation of large black holes at energies above Ms/g
2
s , but weak coupling

techniques are known to break down in scattering at energies large compared to the string

scale as well [50, 51]. Therefore, it is natural to expect that many high energy properties of

fundamental strings are hard to compute using perturbative string theory, and are instead

captured by the linear dilaton throat geometry.

An example is scattering off a highly excited string. Probes with vanishing angular

momentum can explore the throat associated with the fundamental strings and the scat-

tering amplitude might receive a contribution from this region. In order to reproduce the

black hole result from the perturbative S-matrix one has to sum over contributions in which

the massive target is a multi-string state consisting of an arbitrary number of strings. This

inclusive process might be hard to study using the standard perturbative approach, but

if this is feasible, it would be interesting to compare the results to those obtained in the

two dimensional black hole background. This may lead to new insights on the black hole

information paradox, the resolution of the black hole singularity and other related issues.

Our discussion also sheds light on the string/black hole correspondence studied in [21 –

24, 52 – 54]. For states with M À Ms/g
2
s , the gravity approximation is valid and the ap-

propriate thermodynamic description is in terms of large black holes with low Hawking

temperature in asymptotically flat spacetime. As the mass decreases, the Hawking tem-

perature increases. In the correspondence region M ∼ Ms/g
2
s the temperature reaches the

string scale and string corrections to the geometry become significant. Thus, one would

expect significant corrections to the thermodynamics of such string size black holes.

4According to [34] the heterotic string in the background of fW NS5-branes is described by setting eN = 1

(and not to zero, as one may naively expect). Setting eN = 0 seems, instead, to correspond to no fivebranes.
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Similarly, the thermodynamics of free strings, which is expected to be valid for M ¿
Ms/g

2
s , is expected to receive large corrections as one approaches the correspondence region,

due to gravitational self-interactions of the strings. Nevertheless, the authors of [21 – 24]

pointed out that extrapolating the large black hole and free string results to this regime

leads to qualitative agreement. This is known as the string/black hole correspondence

principle.

In Euclidean black hole solutions, the time coordinate approaches asymptotically a

circle of circumference β. Winding around this circle is not conserved as strings can unwind

near the Euclidean horizon. In [52, 53] it was proposed that the sigma model corresponding

to such black holes has a non-zero condensate of the closed string tachyon winding around

the circle. For large black holes this is a small non-perturbative effect in the black hole

sigma model, which influences the physics in a region of size ls around the Euclidean

horizon. However, as the Hawking temperature increases, the effects of this tachyon become

more important and eventually, when the Hawking temperature approaches the Hagedorn

temperature, the tachyon becomes massless and its fluctuations extend all the way to

infinity.

The Minkowski analog of the tachyon condensate is a gas of fundamental strings at the

appropriate temperature. The radial extent of the condensate is a measure of the effective

size of such strings. For large mass it is small due to the gravitational effects discussed

in [21 – 24]. As the mass decreases, this size grows since gravity becomes weaker.

For masses in the correspondence region M ∼ Ms/g
2
s the strings are strongly inter-

acting and hence we expect the temperature to be well below the Hagedorn temperature.

Thus, the tachyon is massive and the effective size of generic string states is of order one,

as discussed in [21 – 24]. This region is hard to analyze from both the black hole and

fundamental string perspectives.

As the mass continues to decrease below the correspondence region, the temperature

continues to grow and eventually, as g2
sM/Ms → 0, it approaches its limiting value — the

Hagedorn temperature. In the process, the tachyon in the Euclidean black hole solution

becomes lighter, and its condensate extends farther and farther in the radial direction.

This leads to a smooth crossover between the black hole and free string behaviors.

For g2
sM/Ms ¿ 1 a linear dilaton throat develops in a string size region around the

horizon. As M decreases, this throat becomes larger, and as long as M À Ms the string

coupling outside the horizon remains small. In the limit gs → 0 with M/Ms large but fixed

the temperature approaches the Hagedorn temperature, while the part of the geometry

corresponding to finite r approaches IR3 × S1 (or IR4 × S1 in the heterotic case) and de-

couples from the linear dilaton throat. One can think of the two parts of the geometry as

providing the microscopic and thermodynamic descriptions of the relevant states, respec-

tively. In particular, the entropy of perturbative strings is given by the BH entropy of the

corresponding two dimensional black hole.

The Euclidean two dimensional black hole, which we proposed as a description of the

near-horizon geometry of small black holes, is known to contain a condensate of a tachyon

winding around Euclidean time [36 – 38]. For finite value of the asymptotic string coupling,

this geometry should attach smoothly to the flat spacetime at infinity. Thus, it is natural
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to expect that, at least for small black holes, the expectation value of the winding tachyon

is non-zero at large distances from the horizon as well, in agreement with the proposal

of [52, 53]. Decreasing the BH temperature (or increasing the mass towards the large black

hole regime) should not change the fact that the tachyon condensate is non-trivial.
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